The Boost mission is threefold:
 Develop high-quality, expert-reviewed, open-source C++ libraries
* Incubate C++ standard library enhancements
» Advance and disseminate C++ development best practices

Boost is guided by our shared values of transparency, inclusivity,
consensus-building, federated authorship, and community-driven
leadership.

New website design
In progress at preview.boost.org

boost.org is getting its first revamp in 25 years! In
addition to cooler looks, the new website will offer user
log-in with GitHub or Google credentials, web-based
forums tightly integrated with the classical mailing
lists, updated tutorials, news section, and more!

Boost Newrs Learn ammunity ibraries Releases

- W «

Integrated full-text search

The embedded widget indexes documentation from all
libraries to provide comprehensive, precise and
structured search beyond what’s possible with external
engines.

Search by @ algolia 8 Report Issue

E E - -
;,EQE Modularization

A recurrent request from users is the possibility to
install individual Boost libraries to minimize HD space
and build times. This is already provided by vcpkg and
we’re working with Conan to get there too.

Behind the scenes, a lot of work is underway to
support modular builds by major package managers:

« C(Circular dependencies between Boost libs have
been eliminated since 1.77 (Aug 2021).

 The boostdep tool automatically extracts the
internal dependencies of any library.

 Lib repos are being updated so that B2, the official
Boost builder, can work with them separately
without requiring a full superproject download.

Stay tuned for further advances in modular installs!

CMake support

In development

Git clone Boost and use standard
CMake procedures to build, install and
use it. Integration in your builds is
supported via find_package,
add_subdirectory or FetchContent,
either for the entire Boost super-
project or for individually specified libraries.

The most widely used collection of high quality,
peer-reviewed C++ libraries on the planet.

The libraries continue to thrive, delivering unparalleled
performance and reliability.

New website
Full-text search
Smaller installs
C++03 deprecation

Discussions groups at cpplang.slack.com

EL5E
www.boost.org a%
=] %4

Boost.Mp11

Fast, useful metaprogramming for the everyday
programmer. Based on C++11 template aliases and
variadic templates, Boost.Mp11 makes it easy to
automatically generate test cases for generic code,
manipulate type lists as comfortably as run-time
containers, or, in combination with Boost.Describe,
visit classes for serialization or JSON conversion.
S5

Boost.Describe ;

E=EA

You don’t have to wait for the next decade
to enjoy C++ static reflection capabilities. Annotate
your types with simple BOOST_DESCRIBE_* macros to
automatically get a wealth of type information at
compile time: member types and signatures, names,
base classes... Best used in combination with
Boost.Mp11.

#include <boost/describe.hpp>
#include <boost/mpll.hpp>
#include <cstdio>

enum E
{

vli =11, v2, v3 =5
};

BOOST_DESCRIBE_ENUM(E, v1, v2, v3)

int main()
{
boost::mpll::mp_for_each<
boost::describe: :describe_enumerators<E>>([](auto D){
std: :printf(
"%s: %d\n", D.name, D.value);
3
}

Boost.MySQL

Access your MySQL and MariaDB
servers in a truly asynchronous
fashion, using Boost.Asio's async
model.

Featuring a static interface that
allows parsing rows into your own data structures, and
a dynamic interface for maximum flexibility.

All of this with zero dependencies on the official C
drivers!

(=] m]

Boost.Redis -
Coming in Boost 1.84 (Dec 2023)

High-level client library for Redis 6 or higher based on
Boost.Asio.

Designed with a focus on performance, Boost.Redis
allows for concurrent requests, pipelining and in-place
data retrieval. STL containers and user-defined types
can be easily managed through string serialization.

In addition to standards-compliant implementations of
std::unordered_map and relatives, Boost.Unordered
now features:

boost::unordered_flat_ map: One of the fastest
hashmaps in the market. Takes advantage of open-
addressing techniques and SIMD instructions to easily
outperform standard containers by 3x or more.

boost::concurrent_flat_map: Suitable for high-load
concurrent scenarios. To avoid deadlocking issues with
iterators, this container introduces a novel, iterator-free
APl based on the visitation paradigm.

Boost.URL %

Full implementation of RFC3986 URI/URL specification.

authority

[https]:II [user:pass]@[www.example.com:80] /path/to/file.txt] ? [cn=text&cached] # [more]

scheme userinfo host and port path query fragment

Parse URLs into their constituent parts and use the
container-based APl to analyze them and synthesize
new ones with ease.

Candidate Boost.Charconv

Upcoming review

today! Convert from a sequence of characters to any
integral/floating point type and back, with maximum
speed and precision.

#include <boost/charconv.hpp>

const char* buffer = "42";
int v = 0;
auto r = boost::charconv::from_chars(
buffer,
buffer + std::strlen(buffer), v);
assert(r.ec == std::errc());
assert(v == 42);

char buffer[64];
int v = 123456;
auto r = boost::charconv::to_chars(

buffer,

buffer + sizeof(buffer) - 1, v);
assert(r.ec == std::errc());
// Strncmp returns © on match
assert(!strncmp(buffer, "123456", 6));

	Diapositiva 3
	Diapositiva 4

